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The problem of the linear stability of fast plane longitudinal shock waves (SW) in an isotropic elastic body whose elastic potential 
is a given function of the deformation tensor invariants depending additively on entropy is considered. When the medium is in 
a state of uniaxial compJ:ession or extension, the resulting dispersion equation can be factorized. Assuming that ahead of the 
SW the medium is in a state of uniaxial compression (extension), sufficient conditions for the instability of longitudinal SWs are 
obtained. When the m~Jium is in a state of uniaxial extension ahead of the SW and the velocity of the SW is such that the 
deformations behind the SW are close to zero and much smaller than those ahead of the SW, the problem of linear stability is 
solved completely, i.e. the necessary and sufficient conditions for stable, unstable and neutrally stable SWs to exist are stated. 
All the results obtained remain valid in the case of a medium with transverse anisotropy (the direction of the anisotropy axis 
coinciding with the direction of SW propagation), and also for an isotropic medium in a state of compression (extension) in the 
direction of two mutually perpendicular axes lying in the plane perpendicular to the direction of SW propagation, the deformations 
along these axes being equal. Copyright O 1996 Elsevier Science Ltd. 

1. D E R I V A T I O N  OF AN E Q U A T I O N  F O R  
T H E  N A T U R A L  F R E Q U E N C I E S  

Consider a plane kmgitudinal shock wave (SW) propagating at constant Lagrangian velocity Wo with 
respect to the particles of  an isotropic elastic medium, the elastic potential • of  which is a function of 
the invariants Ik of  the strain tensor g~ which depends additively on the entropy. The last assumption 
holds for SWs of  modera te  intensity and corresponds to the universally adopted [1] expansion of • in 
powers of  Ik (I1 = ~ , / 2  = ~ ,  13 = ~ )  up to and including the fourth power of  ~ .  Let  Wo be 
perpendicular to the SW plane and directed along the ~ axis of  a rectangular Cartesian system of  
coordinates (~1, ~2, ~ ) .  Among  the components  of  the strain tensor in the domain ahead of the SW 
only ~33 may be non-zero and is assumed to be constant. The system of  coordinates (~1, ~ ,  ~ )  initially 
coincides with the Lagrangian system behind the SW. The propagation of the shock wave in the medium 
results in compresdon  along the ~ axis, i.e. the directions of  the axes of  the Lagrangian system of  
coordinates and the chosen system of coordinates (~1, ~,2, ~3) coincide ahead of the SW front as well 
as behind it. 

The equations of  motion of the medium described above can be written in the form [1] 

~V 7 a2ep , aU~ = OVin , i , j  = 1 . . . . .  3; n = i , 2  
P0 ~t  = i g , a U i j  ~t  i g j  (1.1) 

Here  V n = {VT, V~, V]} is the velocity vector of  the medium, U j  are the components  of  the tensor of  
displacement gradients, P0 is the density, and the superscript corresponds to the states ahead of the 
SW (n = 1) and behind it (n = 2). 

Equations (1.1) form a system of first-order quasilinear hyperbolic equations and can have solutions 
containing surfaces of strong discontinuity, on which the conditions 

w[u~j ]+[v~]nj =0 

poW[Vi]+[~/~}Uij]n/=0 ( [ f ]  = f2 _ f l )  

(1.2) 

are satisfied (n = {nl, n2, n3} is the vector of  the normal  to the surface of discontinuity and W is the 
velocity of  the discontinuity). 
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For a plane SW propagating at constant velocity W0 along the ~3 axis conditions (1.2) lead to the 
relations 

poWo 2[U 3 ] = [,9¢, / au 3 ] (1.3) 

connecting the strain states ahead of the SW and behind it. It follows from (1.3) that if Ui~ 1) # 0 only 
for i = 3, then a solution exists for which U3(~ ) will also be the only non-zero component of the 
displacement gradient tensor behind the SW. 

To study the stability of the SW we change to a system of coordinates {XI, X2, X3} moving with the 
SW so that X1 = ~l, X2 = ~2, X3 = ~ - W0 t. Then the domain X3 > 0 corresponds to the state ahead 
of the SW and the domain X3 < 0 corresponds to the state behind the SW. 

We will consider weak perturbations of the SW surface described by the equation X3 - e~(X1, X2, t) 
= 0, e ~< 1, where ~ = ~'0 exp(--/flt +/ktX1 + ikz, X2). Then the perturbations of the physical quantities 
can be sought in the form 

IJ = (V',lJ') = (V~, I1~) exp(-iD.t + i(kX)) (1.4) 

where k = {kl, k2, k 3} is the wave vector and X = (XI ,X: ,X3) .  When solving the problem it is sufticier:t 
to restrict oneself to perturbations of this form only [2]. 

Because of the evolutionary character of the fast discontinuity under consideration the perturbations 
of the physical quantities in the domain ahead of the SW are incoming and can be assumed to be absent. 
In the domain behind the SW the small perturbations satisfy relations which can be obtained by 
linearizing system (1.1) after writing it down in the moving coordinates {X1, X2, X3}. Taking (2.4) into 
account, we can write these relations in the form 

-(ou  = ,sv;  - pomV s' = (1.5) 

Alpp =B2(l)/~Uij~Usp, ~ = [~. + Wok 3 

The system of linear equations (1.5) has a non-trivial solution if and only if its determinant is zero. 
This condition leads to a relation between the frequency fl and the components kj of the wave vector k 

[(A3333k ~ + A3,.~,k ~ - poCO 2)(A,3'3k ~ + A, , ,  lk~ - po ~2) - 
2 2 2  2 2 -cok  3 k x ](Ai313k3 + Al212k ~ - potO 2) = 0 

C0 = AI331 + A1133 

(1.6) 

We emphasize that the coefficients of the dispersion equation (1.6) depend only on k~ and are 
independent of the components k I and k2 of the wave vector taken on their own. This is due to the 
absence of transverse deformations in the domain behind the SW, as a result of which all directions 
tangent to the SW plane are equivalent and the velocities of propagation of weak perturbations depend 
only on the angle between the wave vector k and the X3 axis. 

The quantities (V', U •) satisfy linear boundary conditions on the SW, which can be obtained after 
substituting the expansions 

+¢ Ox, w-- Wo 

, 't 

into (1.2) and retaining terms of order e using (1.3). Taking (1.4) into account, we obtain the system 

• <2> 2 -  , < 2 > .  p - - < 2 > . ,  t 
-2P0W0if~ [U°3 ] = U33 [ A  3333 - PoWo J + / 1 3 3 1 1 U I I  +/13322/-/22 

. • <2> • <2> • 
PoWo2U~3 = -[3¢P / OU jj ]tkj~ o + As3j3U j3 + Aj33jU3j 
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• , WoU33 - 1~"~0 [U33 ] + V3' = 0 W o U  j3  + v~ = O, , • , o 

V;,=t%=o, tqj+/t, jX~tt:3J=O, j=l,2 

(1.7) 

of 12 equations relating the values of the 13 unknowns U~, V~, ~ on the SW. To close the system we 
use the following fact. The dispersion equation (1.6) has six roots kan ~ k~  (fl, k~), (n = 1, . . . ,  6) 
corresponding to longitudinal and transverse sound waves, of which only one longitudinal wave arrives 
at the discontinuity because of the evolutionary nature of the SW (since the SW under consideration 
is a fast one, there are no perturbations ahead of it). 
at Wet= assume that U 0 and V i are bounded asX3 --* -0- and only the surface of discontinuity is perturbed 

0, the solution perturbations in the domains ahead of the discontinuity and behind it being equal 
to zero. Because of this, a relation [3] excluding incoming perturbations must hold on the SW [3]. To 
study this relation we write the linearized original system (1.1) in the form 

Ot Pot Ox3 + Ox2 axe) =°  (1.8) 

(U is a vector formed by the components of the vector V and the tensor U). 
We apply a Laplace transformation with respect to t and X 3 and a Fourier transformation with respect 

to X1 and X2 to (1.8). Then, using the boundary conditions on the SW and finding the inverse Laplace 
transform, we obtain 

1_1_~ H(Io(t2,k3,k2,kl) e_ik~qdk 3 
U(x3) = 2~i i(k.alt+k2F+kl6+pot2[) (1.9) 

where I30 is the valae of 13 on the SW. 
Solution (1.9) is determined by the poles of the integrand. But the incoming waves cannot make a 

contribution to the solution, since Uij and Vj are bounded as X3 ---> 00. 
Let L be the left eigenvector corresponding to an incoming longitudinal wave, i.e. (L (k3H + k2F + 

klG + pot2E) = 0). Solution (1.9) will exist if 

(Xl]o,t) = 0 (1.10) 

This is the additional relationship which closes system (1.7). For a non-trivial solution of system (1.7), 
(1.10) to exist its determinant must be zero. This condition reduces to a relationship from which we 
can determine the natural frequency ~.  In this way one can solve the problem of the stability of the 
SW. When Co ¢ 0, the condition has the form 

O(~,  k 3, k~) -= qp0o~ 2 + c2k 2 + c3k ~ = 0 (1.11) 

q =-(AII33[U°al-[301bUII ]), c2 =-at313c t 

c3 = c o d 3 I U ° 3 1  - A3333ct, dj = (W02p0 - Aj3j3  ) 

(the values of A#sq are taken behind the SW front). 
But if Co = 0, the condition that the determinant of system (1.7), (1.10) must equal zero reduces to 

o}k3[U3°3]d3 ----- 0. This means that the point on the shock adiabatic curve corresponding to such a 
discontinuity is a .Iouguet point. We shall therefore henceforth assume that the condition Co = 0 is 
violated. 

If Eq. (1.11) has a root f~ whose imaginary part is positive, the perturbations increase with time and 
the SW is unstable. When lm t~ < 0, the SW is stable. But if Im t2 = 0, the perturbations remain bounded 
and a neutral stability regime occurs. The difficulty in solving Eq. (1.11) lies in the fact that the branch 
k 3 -=- k 3 ( ~ ,  k 2) of the dispersion equation appearing in it is a rather complicated algebraic function of 
the complex variable fL 
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2. A S Y M P T O T I C  P R O P E R T I E S  OF THE EQUATI ON FOR THE 
N A T U R A L  F R E Q U E N C I E S  

The complete system of independent dimensionless complexes {¥1, ¥2, . . . .  y,,} formed by the physical 
constants which occur in the problem will be called the space of determining parameters for problem 
(1.5), (1.7). The space {¥z, Y2, . . . .  y~} can be represented as a direct sum of subdomains of dimensions 
N such that the solution of problem (1.5), (1.7) is stable, unstable or neutrally stable at internal points 
of each of the subdomains [2]. The solution alters its asymptotic behaviour on the surfaces G,x(Y1, 
¥2 . . . . .  Yn) = 0 serving as the boundaries of these subdomains. 

It was shown in [2] that if the components kl and k2 of the wave vector appear in D only through k~ 
= k~ + k22, then one of the boundaries Ga of the instability domain corresponds to a transfer of a pair 
of real roots t2 of D onto the imaginary axis Re f~ = 0 through infinity. (For example, in gas dynamics 
this boundary is given by 8 = -1 - 2M, where $ is the dimensionless derivative along the shock adiabatic 
curve and M is the Mach number behind the SW [4].) 

Indeed, as t2 ---> ~* the leading term of k3 = k3(fl, k~) with respect to I k~/[2 I becomes linear and 
D(t2, k~) becomes a polynomial 

D(~, k 2 ) = bo ~2 + b,k 2 + O(k 2 1 ~2 ) = 0 (2. I) 

As b0 ---> ** one of the pairs of roots of D has the asymptotic form 

f2 = +(-b~ / bo)Y~Ik~i 

which corresponds to the occurrence of instability described above if the surface b0(Y1, Y2, • • •, Yn) = 0 
is taken as Ga. It follows that b0(y1, Yz, . . . .  yn) = 0 is a sufficient condition for the SW to be unstable. 

To construct G¢, we observe that the leading term with respect to k~/f2 in the problem of the 
propagation of small perturbations becomes one-dimensional as ~ --> **. Therefore, the following relation 
holds for the longitudinal sound wave arriving at the discontinuity 

2 
k 3 = A t - A 2 

:A "~½ 
AI = ~'~ A2 = {c02 - AI313(A~33 - AI313)} ao ,  ao - / '13333 / 

ao - ' - - - " ~ 0  ' 2(A3333 - AI313 )A3333 - ~ , ' - - ~ 0  J 

Substituting this asymptotic form into (1.11), we obtain 

bo = Coa3[ u~3 ] l ( ao - Wo ) 2 

(the values ofAih q are taken behind the SW front). 
It is clear that the condition b0 = 0 is violated under the assumptions made. Therefore, there is no 

surface corresponding to a transition to instability as ~ --> 0. 
We will show that a surface on which a transition to instability occurs may exist in the space of the 

governing parameters of the problem as i2 --+ 0. 
When f~ ~ ** the solution of the dispersion equation (1.6) can be represented in the form 

k 3 = ~(m i +m2~Ik ~ +O(g~ 2 Ik~)) (2.2) 

where 

m~ = (b + ~ - 4ac) I (2a) 

a = d l d  3, b= Alllld3 + Ai313dl + c 2, c~'AIIIIAI313 
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correspond to an incx)ming wave. 
Since a < 0 and c :> 0, it is always true that m 2 < 0. This means that the system of linearized equations 

of elasticity lacks hyperbolieity for small fL Substituting (2.2) into (1.11), we obtain 

D := s o + sit3 / k~ + O(fl  2 / k~ 2) (2.3) 

SO= AI313( AII33[U°3]-[ ~-~II ])+ m~d3( AI331[U°3]+[.~UII ]] 
si = 2mlPoWo( [ ~il ]- At133[U°3])+ m2d3( AI53,[U°3]+[ ~-~Hi ] ) 

It follows from (2.3) that f l  = -Sos~lkl.  Since ml is imaginary, we have sl = Sn +/st2, st2 ~ 0 and a 
transition to instabi.lity occurs on the surface So -- O, with 

~l  / 51250 
I m ~ = I m  - k ,  = k~ s21+ s22 

Therefore instability is guaranteed on the side of the surface So = 0 where sl2s0 > 0. 

3. ON THE STABILITY OF A SW OF SPECIAL FORM 

Consider SWs whose velocity of propagation Wz is related in a certain way to U33. We assume that 
the state of the medium behind the SW, determined from (1.3), is undeformed, i.e. 

O(2) ~ ,,(2)tit(I) Wz)= 0 (~l~l~Ui/) 0) =0 (3.1) 33 ts33 tv33 ' 

Moreover 

r , f Wz=W,(U~I)):L~t-~-~33) j (3.2) 

Therefore, for a given initial value of Ut~ s there is an evolutionary SW that satisfies (3.1), if W z satisfy 
the evolution conditions (or Lax inequalities) 

A(2> i( ~, '~<'> <2> ~(T~.I °> (3.3) 

The second inequality in (3.3) implies, in particular, that the expression under the root sign in (3.2) 
is greater than zero. 

When U3(32) = (}, all directions in the medium behind the SW front are equivalent. The dispersion 
equations (1.6) c~m be simplified, taking the form 

(k~ + k~ 2 2 2 2 = p00~2 / (3.4) -oq) (k, +k  2 - O t l ) = O ,  a/ AD/3 

The dispersion equation (3.4) has six roots, four of which (~ + k~ - ~) correspond to transverse 
waves and two (k~ + k] - a]) to longitudinal waves. The last relation implies that 

k3 (~0)  = 
no.M 2 + t t~sF - (1 - SF)k~ I g (3.5) 

1 -  M 2 

f l  
a o = ~ ,  u2 = p~w) < I 

A3333 
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in the incoming longitudinal waves. 
Substituting (3.5) into (1.11) and taking into account  the fact that  

AI33t + Aii33 = A3333 - AI313 , A | i l l  = A3333 

r r (2) when ~ 33 -- 0, w e  o b t a i n  

D(f~o) = t ~  (1 + M 2) + 2 f l  0 [f202M 2 - (1 - M 2)k~ ]½ - o(1 - M 2 )k~ = 0 (3.6) 

{3"----[(~ / ~ U I I ) [  U~3 - A l l 3 3  + A3333] / ( P o W ? )  

where  o ~ 1 for  waves of  low intensity. 
It was shown in [2] that the boundaries  be tween different  stability states correspond to the following 

CaSeS. 
1. The  boundary  between neutral  stability and instability occurs when the root  of  (3.6) passes through 

infinity. No boundary  between states (see above) occurs. 
2. The  boundary  between neutral  stability and stability occurs when the branching point  of  k3(~.0) 

is a root  of  D(f2, k). The  equat ion of  this surface in the space of  governing parameters  will be 

1 + M 2 - o M  2 = 0 ( 3 . 7 )  

If 1 + M 2 - o M  2 > 0, the SW is stable. Otherwise it is neutral ly stable. This inequality holds for  SWs 
of  low intensity. 

3. The  transition from stability to instability corresponds to the appearance  o f  multiple roots  o f  D( l ) ,  
k 0  on the real axis or a root  falling outside the cut between the branch points of  k3(t)). The  lat ter  
possibility occurs at the point  t2 = 0. The  value l )  = 0 is a roo t  o f  D ( ~ ,  k,)  if 0 = 0. This case is not  
realized for  waves of  low intensity, since 0 ~ 1 for such waves. 

Thus, if 0 < 0, the SW will be unstable, if 0 < o < (1 + M2)/M 2, it will be stable, and if 0 > (1 + 
M2)/M 2, it will be neutrally stable. It follows f rom what was said above that  SWs of  low intensity are 
always stable. Various states (depending on o )  can be realized using the model  o f  SWs of  finite intensity 
considered in this paper.  

For example, if the medium is given by the potential 

+40~122 
l q , /  

and the state in front of the wave is given by U(J~ = - 1/4, the state behind the SW front will be/.f12~ = O if the SW 
passes with velocity W, given by (3.2). In this case o = O, and the evolution conditions are satisfied, and so are the 
conditions requiring that the squares of the characteristic velocities must be positive. If U(~] = -0.24, then 0 < a 
< (1 + M2)/M 2, and the SW is stable. If U(~] = -0.26, then o < O, and the SW is unstable. 

2 3 2 If the medium is given by the potential • = O.l~t h + }112 - 0 . | ~ 1  - 0-2~tl2, arid the state ahead of the SW is given 
by U(313 ) = -0.3, then the state behind the SW front will be U~32~ = 0 if the SW passes with velocity Wz determined 
by (2.2). In this case 0 > (1 + M2)/M 2, arid the SW will be neutrally stable. 

In gas dynamics the equation for perturbation frequencies has the form 

['2 2 (l + 6) + 2~[L'~2M 2 - (1 - M 2 )k 2 ]~  - 0"(6 - l )k 2 = 0 (3.8) 

where o = P2/Pt > 1 is the ratio of the density behind the jump and that ahead of the jump, 6 is the dimensionless 
derivative along the shock adiabatic curve, and M is the Mach number behind the SW. 

Unlike Eq. (3.6), the presence of the additional parameter 6 is related to entropy in gas dynamics. If a medium 
with internal energy of the form 

E(o ,s) = El (~)+ E2 (s)+ eE3 (u ,s) 

is considered, where e ~ 1, v is the specific volume, and s is the entropy, then 6 will no longer be an independent 
parameter and will be equal to M 2. In this case the instability state cannot be realized and the boundary between 
neutral stability and stability is given by (3.7). 
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